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Abstract—This paper proposes an integrated approach for
the safe and efficient control of mobile robots in dynamic
and uncertain environments. The approach consists of two
key steps: one-shot multimodal motion prediction to anticipate
motions of dynamic obstacles and model predictive control to
incorporate these predictions into the motion planning process.
Motion prediction is driven by an energy-based neural network
that generates high-resolution, multi-step predictions in a sin-
gle operation. The prediction outcomes are further utilized to
create geometric shapes formulated as mathematical constraints.
Instead of treating each dynamic obstacle individually, predicted
obstacles are grouped by proximity in an unsupervised way
to improve performance and efficiency. The overall collision-
free navigation is handled by model predictive control with a
specific design for proactive dynamic obstacle avoidance. The
proposed approach allows mobile robots to navigate effectively
in dynamic environments. Its performance is accessed across
various scenarios that represent typical warehouse settings. The
results demonstrate that the proposed approach outperforms
other existing dynamic obstacle avoidance methods.

Index Terms—Human-aware motion planning, collision avoid-
ance, deep learning methods.

I. INTRODUCTION

FACTORY, warehouse, and laboratory layouts are subject
to changes, and the presence of humans and manu-

ally driven vehicles further complicates motion planning for
Autonomous Mobile Robots (AMRs). To ensure collision
avoidance, AMRs must anticipate interactions with static and
dynamic objects, though the unpredictability of humans poses
significant challenges. A prevalent strategy is to halt the robot
when obstacles are detected [1], risking downtime if obstruc-
tions persist or deadlocks occur. This study addresses collision-
free navigation for AMRs in industrial settings but can be
generalized to other settings with similar traffic dynamics.

Dynamic Obstacle Avoidance (DOA) has been a key re-
search area since the advent of AMRs, with an initial emphasis
on safety. This often leads to overly cautious behavior, exem-
plified by the Freezing Robot Problem (FRP) [2], where the
planner deems all paths and stops the robot. Advancements
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Fig. 1. Pipeline of the proposed obstacle avoidance approach, assuming
environmental information is provided by a bird’s-eye-view vision system.

in perception and computation technologies enable robots to
rapidly and accurately gather extensive environmental data
and coordinate actions, improving the ability to implement
effective decision-making strategies. Recent research has im-
proved motion planning efficiency and addressed FRP by
incorporating human movements and intentions [3], [4], espe-
cially in social robot navigation [5]. In traditional model-based
approaches, the Constant Velocity Model (CVM) and velocity-
based strategies are widely used for predicting human motion
in navigation frameworks [3], [6], [7]. Additionally, predefined
kinematics-based [8] and interaction-based [9] models offer
more detailed insights for motion planners. Recently, learning-
based models have become the primary motion predictor
in most prescient navigation frameworks due to their high
flexibility and ability to interpret complex and uncertain in-
teractions and environments [4], [9]–[11].

This work presents a navigation framework for multi-
ple AMRs in dynamic environments, tailored for industrial
transport tasks, incorporating multimodal motion prediction,
prediction grouping, static obstacle avoidance, proactive DOA,
and fleet collision avoidance. The approach integrates a data-
driven motion predictor with a predictive trajectory planner.
Specifically, an energy-based model predicts possible future
motions of dynamic obstacles as probability maps, which
are used by distributed Model Predictive Control (MPC) for
safe navigation. Multiple tests are designed to evaluate the
method’s performance in a comparative study with state-of-
the-art approaches. The main contributions are threefold:

• Introducing a fast and stable energy-based learning approach
for multimodal motion prediction enabling improved inte-
gration with downstream planning and control.

• Improving MPC-based motion planner for effective, safe,
and efficient fleet control in dynamic environments.

• Evaluating the framework under various conditions and
scenarios, with and without cooperative pedestrians.
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II. RELATED WORK

Motion prediction of dynamic obstacles is crucial for the
downstream motion planning of AMRs. Early CVM-based
methods rely solely on velocity information and have been
proven effective [12], but struggle with human behavior’s
uncertainty. Other model-based approaches, such as social
force [13], reciprocal velocity obstacles [14], and other kine-
matic models [8], also fail to capture the multimodality
required to address this uncertainty. Advancements in deep
learning have enabled the effective capture of environmental
contexts and agent interactions while supporting uncertainty
and multimodality. Techniques such as social pooling [15],
[16] model pedestrian interactions, Convolutional Neural Net-
works (CNNs) enhance context perception [17]–[19], attention
mechanisms [20] provide a comprehensive and global un-
derstanding, and inverse reinforcement learning [21] encodes
environmental information as rewards.

Reinforcement learning has been applied to AMR mo-
tion planning and obstacle avoidance [3], [22], providing
flexibility but facing instability and safety challenges. Field-
based methods [7] have been developed to generate smooth
motion fields around obstacles. However, these methods fail to
address the inherent uncertainty in the environment. Industrial
transport robots require stability, flexibility, interpretability,
and predictive capabilities. As an optimization-based method,
MPC is well-suited for DOA due to its constraint handling and
predictive receding horizon. Combining MPC with deep learn-
ing for motion prediction improves accuracy and effectiveness
in dynamic environments [9]–[11], [23].

This work follows a similar modular structure as in [11]
but with two key differences, including a faster and more
stable neural network for multimodal motion prediction and
an extended MPC controller to achieve fleet collision avoid-
ance [24]. A novel Energy-Based Learning (EBL) strategy is
proposed to apply the new neural network architecture.

III. PROBLEM FORMULATION

This work addresses two coherent challenges: AMR con-
troller design for DOA and motion prediction of dynamic
obstacles, focusing on 2D spaces and discrete-time domains.
Collision-free Motion Planning: Let the discrete motion
model for the i-th AMR is s

(i)
k+1 = f(s

(i)
k , u

(i)
k ) in a fleet,

where s
(i)
k and u

(i)
k represent its state and action at time step

k. The aim is to plan its trajectory along a given reference
path while avoiding collisions with obstacles or other robots
and adhering to its physical limitations. For simplicity, the
identification index (i) is omitted when discussing a single
robot for all variables. Static obstacles are assumed to be
polygonal. Their occupied area, O = ∪jO(j), is the union
of individuals, where each set is a closed intersection of
half-spaces. Dynamic obstacles are modeled as ellipses and
the corresponding area Dk may vary over time. Similarly,
Dk = ∪jD(j)

k . At any time, a robot at position pk must be
outside any obstacles: ∀k, pk /∈ O∪Dk. Obstacles are inflated
by the size of the robot, and robots are regarded as points [11].
Motion Prediction: To consider potential collisions with
dynamic obstacles, AMRs should have access to the estimated

future positions of obstacles. Let the predictive horizon be
N , AMRs require information on other dynamic objects from
the current instant to future N steps. For dynamic obstacle i,
the task is to predict its future states {z(i)

tk
}k+N
tk=k. Since future

motion can be multimodal, multiple hypotheses of each future
position should be available. For a maximal number M of
modes at each time step for each dynamic obstacle, the desired
prediction is notated as {{mz

(i)
tk
}Mm=1}k+N

tk=k.

IV. FUTURE-ORIENTED MODEL PREDICTIVE CONTROL

This section outlines the formulation of the MPC problem
incorporating DOA with consideration of multiple futures.

A. Dynamic Obstacle Avoidance with Multiple Futures
A dynamic obstacle with M possible futures can be viewed

as M potential obstacles, each with a different probability
of occurrence. Assuming accurate predictions, a sufficient
condition for an AMR to avoid the obstacle within the horizon
is that it avoids collisions with all potential obstacles at the
corresponding time steps, as in Eq. (1), where

m
D̂tk is the

predicted occupied area of obstacle m at tk. A positive integer
set from a to b is denoted as N[a,b].

∀tk ∈ N[k,k+N ], m ∈ N[1,M ], ptk /∈
m
D̂tk . (1)

This condition can be overly restrictive, especially with large
M , as potential obstacles may occupy the entire drivable
area, rendering the MPC problem infeasible. Retaining only
predicted futures with high probabilities provides limited mit-
igation of this issue. Thus, two solutions are introduced in this
work to address this.

Firstly, rather than enforcing predictive DOA as a hard
constraint, a flexible alternative is to add it into the objective as
a soft constraint, as shown in Eq. (2) for tk ∈ N[k,k+N ]. Here,
function ιD(·) [11] evaluates the distance between the robot
and the potential obstacle, βtk is the weight corresponding to
time, and αm is mode-dependent.

JD(tk) = βtk ·

[
M∑

m=1

αm · ιD(ptk ,
mDtk)

]
(2)

The mode weight αm can be determined by the probability of
each mode’s occurrence, reflecting the intrinsic uncertainty.
The time weight βtk can be chosen such that a larger tk
corresponds to a smaller weight. The second idea is to group
predictions at each step based on their proximity [23]. This
strategy considers occupied areas collectively rather than fo-
cusing on individuals, which not only reduces the computation
burden for MPC but can also alleviate the FRP.

B. Model Predictive Control Formation
The objective of MPC is composed of three terms, including

the reference deviation term JR, soft DOA term JD, and fleet-
collision-avoidance term [24]. For a robot at time k,

JR(k) = ||sk− s̃k||2Qs
+ ||uk− ũk||2Qu

+ ||uk−uk−1||2Qa
, (3)

JD(k) =

nd∑
j=1

||ιD(pk| q
(j)
k ,σ′j

k )||2QD
, (4)
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Fig. 2. Training results on the Stanford Drone Dataset [25] with different
learning strategies based on the Y-Net [18] architecture. Blue dots indicate
the historical trajectory of the target while red crosses are the ground-truth
future trajectory. The probability maps display the predicted probabilities for
the last future step. Yellow crosses are samples from the maps.

where s̃k is the reference state, ũk is the reference action,
nd is the number of dynamic obstacles, q

(j)
k is the position

of obstacle j, σ′j
k = σj

k + rextra is the obstacle axes based
on the original one σj

k padded by a safe margin rextra, and
all Q variables are penalty parameters. For the fleet collision
avoidance between the ego robot i and another robot j,

JF (j) = max

[
0,Qf ·

(
dfleet − || p(i)

k − p
(j)
k ||

)2
]
, (5)

where dfleet is the safe distance between robots. The overall
MPC problem for mobile robot i is formulated as (omit i if
there is no ambiguity)

min
uk:k+N−1

k+N−1∑
tk=k

[
JR(tk) + JO(tk) + JD(tk)

+

nr∑
j=1,j ̸=i

JF (j)

]
, (6)

s.t. stk+1 = f(stk , utk
), ∀tk ∈ N[k,k+N−1], (7)

utk
∈ [umin,umax], ∀tk ∈ N[k,k+N−1], (8)

u̇tk ∈ [u̇min, u̇max], ∀tk ∈ N[k,k+N−1], (9)
ptk /∈ O, ∀tk ∈ N[k,k+N−1], (10)
ptk /∈ Dtk , ∀tk ∈ N[k,k+Ncrit]. (11)

where nr is the number of robots, Ncrit is the critical horizon
used to apply hard constraints on avoiding dynamic objects,
u̇tk is the derivative of the action, and (umin/max, u̇min/max) are
physical limits of the robot’s action.

V. MULTI-STEP MULTIMODAL MOTION PREDICTION

This section introduces a key innovation: applying energy-
based learning to discrete maps for multimodal motion pre-
diction, framed as a large-scale classification problem. It is
shown that the pixel-level Negative Log-Likelihood (NLL)
loss can produce concentrated predictions required for down-
stream planning. The main challenge with training stability is
addressed by modifying the NLL loss.

A. Energy-based Training

Energy-based models [26] are models trained to yield en-
ergy spaces for given inputs. The training process is known
as EBL. While commonly used in generative models, they
can be applied to regression tasks [27]. For a model Gθ(·)
parameterized by θ, given input x and label y, it should
assign a low energy to the label y and higher energy for
others y′, i.e., Gθ(x,y) ≤ Gθ(x,y

′). In motion prediction,
given input such as historical pedestrian motion, the model
generates an energy space E = Gθ(x) for future motion.
The predicted future position ŷ is obtained by querying the
point in E with the lowest energy. The desired energy space
should be constructed to minimize ||y− ŷ||. Treating E as an
unnormalized probability map, multimodal motion predictions
can be obtained via Monte Carlo sampling.

According to the Gibbs-Boltzmann distribution [26], the
energy can be converted into probability densities,

Pc := Pr(y|x; θ) = e−Gθ(x,y)∫
e−Gθ(x,y′)dy′ . (12)

The integral is mostly intractable [28] and needs to be es-
timated, e.g., via importance sampling [27]. It is possible
to discretize the energy space and substitute the integral by
summation. For motion prediction, if the discretized grid size
is equal to the resolution of the environmental image, the
approximation of the integral is sufficiently accurate. In the
two-dimensional situation, for a discrete energy map with
width W and height H , Eq. (12) can be rewritten as:

P := Pr(y|x; θ) = e−Ew,h∑W
w′=1

∑H
h′=1 e

−Ew′,h′
. (13)

where y = [w, h]T indicating the row index w and column
index h on the image axis. Even though Eq. (13) seems
reasonable, training accordingly is unstable, and the result
tends to be noisy when the size of the energy surface is large.
For example, given an energy map of size 100 × 100, for
each (x,y), only the energy of one pixel is pushed down
and the energy of the other 9999 pixels is pulled up. This
makes the model sensitive to noise and likely to generate too
high or low energy. To solve this problem, the weighted soft
loss and a modified exponential layer [29], called the Positive
Exponential Linear Unit (PELU) are proposed.

The weighted soft loss utilizes relaxed label masks. Instead
of a single ground-truth pixel y, a Gaussian distribution mask
A centered at y with the same size of E is used. Supposing
the constructed mask A to be the ground-truth distribution,
which typically cannot be validated in the real world, the
model can be trained to approximate this distribution via the
Binary Cross Entropy (BCE) loss [18] or Kullback–Leibler
Divergence (KLD). If the model is trained via BCE (which is
not EBL), the direct output logits need to be processed by a
Sigmoid layer and normalized into probability maps. Let Ā
be the normalized mask (A divided by its maximum value).
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Fig. 3. Comparison of training results on the synthetic crossroad dataset from different learning strategies. The first column shows the scenario (top) with
simulated trajectories (white lines) and the estimated ground-truth probability distribution (bottom) after 20 time steps. For the other subfigures, purple dots
indicate the current (big) and past (small) positions of the target. The first row contains predicted samples and clusters from different methods, and each color
indicates a cluster. In the second row, black crosses on probability maps are the ground-truth future positions.

The BCE loss function can be written as

LBCE =−
∑
w′,h′

[
Āw′,h′ lnσ(Ew′,h′)

]
−

∑
w′,h′

[
(1− Āw′,h′) ln(1− σ(Ew′,h′))

]
. (14)

where σ(·) is the element-wise Sigmoid function. Note that
the notation E is kept for simplicity, but the output is not an
energy space for BCE-trained models. If the model is trained
via KLD (which is one form of EBL), the loss function is

LKLD =
∑
w′,h′

A ln
A

P
=

∑
w′,h′

Aw′,h′Ew′,h′

+
∑
w′,h′

Aw′,h′ ln
∑
w′,h′

e−Ew′,h′ . (15)

Both BCE and KLD regard the constructed Gaussian mask as
the ground truth and attempt to align the predicted distribution
with it, which can lead to overestimation, as shown in Fig.
2. This overestimation increases the likelihood of covering
the actual trajectory, particularly in open areas where dy-
namic objects exhibit more random movement compared to
constrained areas such as factories. However, it complicates
downstream motion planning by covering excessively large
areas, potentially obstructing the entire drive space for AMRs.

To overcome this issue, rather than using A as a distribution,
its normalized mask Ā is applied as a weight mask for the
energy space to redefine the probability P̄ ,

P̄w,h =
e−Āw,hEw,h∑W

w′=1

∑H
h′=1 e

−Ew′,h′
, (16)

and the NLL loss is applied,

LNLL = − ln P̄ =− ln
∑
w′,h′

Āw′,h′e−Ew′,h′

+ ln
∑
w′,h′

e−Ew′,h′ . (17)

From our training results, as shown in Fig. 2, NLL generates
more concentrated results compared to BCE and KLD.

As an EBL method, the NLL loss aggressively shapes the
energy space, pushing the energy at the ground-truth cells
down to a large negative value. A large negative energy leads
e−E to infinity and thus fails the training. Our solution is to
add an output layer for energy regulation by substituting the
exploding part of exponentiation with a linear function, which
is similar to the ELU activation function [29],

fPELU(x) = max(0, x) + min(0, ex − 1) + 1 + ϵ, (18)

where ϵ is a small positive offset to prevent the output from
reaching zero, ensuring the logarithm remains finite. Since
the output layer only produces positive values, it is called
Positive ELU (PELU). The PELU layer generates a processed
energy map E′ = PELU(−E), which can be converted into
probability maps P according to Eq. (13),

Pw,h =
E′

w,h∑W
w′=1

∑H
h′=1 E

′
w′,h′

. (19)

By combining Eq. (17) and (19), the final Energy-oriented
NLL (ENLL) loss function is

LENLL = − ln
∑
w′,h′

Āw′,h′E′
w′,h′ + ln

∑
w′,h′

E′
w′,h′ . (20)

B. Clustering and Gaussian Fitting with Probabilities

Samples can be drawn at each time offset on the probability
map. By clustering these samples, different modes are repre-
sented by distinct clusters. Gaussian fitting is then applied to
the samples in each cluster, resulting in multimodal elliptical
Gaussian estimations of the future position. Alternatively, sam-
ples can be directly fit into a Gaussian Mixture Model (GMM).
This process, called Clustering and Gaussian Fitting (CGF)
[23], yields the estimated future states {{mẑ

(i)
tk
}Mm=1}k+N

tk=k

of dynamic obstacle areas {D̂tk}
k+N
tk=k. Since each sample
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Fig. 4. Scenario 3 in obstacle avoidance evaluation. Four pedestrians and two AMRs are crossing an intersection, which causes a busy area and is challenging
for AMRs. The illustrated collision-free example is from MPC-ENLL. The subfigures are in chronological order from left to right.

TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT METHODS IN FIG. 3.

Metrics (lower is better) BCE KLD NLL
JSD 0.4036 0.3407 0.3482

SWD (×10−5) 9.843 9.958 7.407

has a probability density, the probability of a cluster can be
estimated by either the maximum or the weighted average
probability of the samples in that cluster. If a GMM is directly
obtained, the component weights can serve as the cluster
probabilities.

VI. IMPLEMENTATION

A. Motion Prediction via Deep Learning

A U-Net architecture [30] with the PELU output layer is
utilized to generate one-shot motion predictions. The network
consists of four downsampling layers and four corresponding
upsampling layers with skip connections. A lite version with
32/64/128/256 filters is implemented. More detailed hyperpa-
rameters can be found in the configuration from the provided
repository. The input x to the neural network is a stack of
masks Im, indicating the targeted object’s positions, and a
scene image Is. The input can be regarded as a multi-channel
image and each channel has the same size W × H . The
output is a stack of processed energy spaces, and each of
them indicates the future position distribution at a specific
time instant. The variance of the Gaussian distribution mask
A is 10 pixels. The model is trained on four datasets. The
first one is the Stanford Drone Dataset [25] as shown in
Fig. 2 for qualitative comparison, and the training process
follows the same procedure as in [18]. The second one is a
synthetic crossroad dataset for quantitative analysis, with 300
trajectories generated for training, as shown in Fig. 3. The
other ones include a warehouse dataset [11] and a hospital
dataset for the validation of the proposed DOV pipeline. The
warehouse synthetic dataset contains 580 trajectories that are
collected in the environment with random motion noise and
the background image resolution is 330 × 293.The hospital
synthetic dataset contains 660 trajectories with larger motion
uncertainty than the warehouse scene and the background im-
age resolution is 321×321. In synthetic datasets, the pedestrian
model is omnidirectional and moves along predefined paths
with random velocity noise.

B. Proactive Collision Avoidance

As illustrated in Fig. 1, given environmental data and the
locations of AMRs and dynamic obstacles from a vision
and tracking system, the multimodal motion predictor outputs
stacked probability maps indicating future positions of the
target object at each time step from 1 to N . After drawing
samples from these probability maps, the CGF post-processing
method is applied for each time step, producing a stack of
geometric maps, with each map containing predicted potential
ellipsoid obstacles. MPC then uses these stacked geometric
maps to plan a collision-free trajectory for the AMR. The
motion model for AMRs is the non-holonomic unicycle model
as in [11]. The sampling time of the system is 0.2 s. The
predictive horizon N is 20, which means 4 s ahead. In MPC,
the critical horizon Ncrit is 5. For the DOA term, both the
model weight αm and the time weight βm are pre-defined.
The model weight is currently not used and set to be 1. The
time weight is designed to decrease as the time step increases.
Values of all weights can be found in the configuration file
from the given code repository.

VII. EVALUATION

In this section, both qualitative and quantitative evaluations
of the proposed method are introduced. Realistic simulation
is presented via ROS 2 and Gazebo1. Full video of different
scenarios is available2.

A. Motion Prediction Evaluation

In motion prediction tasks, the capture of diversity is
emphasized to increase the likelihood of matching the ground-
truth trajectory. For downstream planning, the focus is on en-
suring the predictions are closely aligned with the ground-truth
probability distribution. As implied in Fig. 2, training via NLL
produces concentrated predictions. Since real-world datasets
don’t come with ground-truth distributions and it is difficult to
estimate a distribution due to the lack of data, for quantitative
analysis, a simulated crossroad scene is used as shown in Fig.
3, where a pedestrian may go straight, turn left or right at
the intersection. To increase local uncertainty, the right side
is an open area, and pedestrians randomly pick endpoints
along the right edge of the map. The ground-truth distribution

1Code repository: https://github.com/Woodenonez/DyObAv MPCnEBM Warehouse
2Full video: https://youtu.be/DpeadFZgl-Y

https://github.com/Woodenonez/DyObAv_MPCnEBM_Warehouse
https://youtu.be/DpeadFZgl-Y
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Fig. 5. Success rates of different methods with and without the cooperative
SF pedestrian model. S1 and S2 mean Scenario 1 and Scenario 2.

Fig. 6. Comparison between grouped prediction (left) and individual predic-
tion (right). As in Fig. 4, the blue circle is the AMR, and the magenta circles
are pedestrians. Red ellipses are predicted positions of pedestrians.

is estimated by fitting samples into a GMM (bottom left
corner in Fig. 3) and compared to output probability maps
from different models in terms of Jensen-Shannon Divergence
(JSD) and Earth Mover’s Distance (EMD, or the Wasserstein
distance [17]). JSD measures overall similarity rather than the
actual distance between distribution peaks. EMD calculates the
minimum “effort” to transform one distribution into another,
which is the product of the amount of moved probability mass
and the corresponding distance. EMD depends on both the
distance between distributions and their overall shapes. Given
EMD’s computational complexity in high dimensions, Sliced
Wasserstein Distance (SWD) [31] is chosen for Monte Carlo
approximation. As shown in TABLE I, KLD and NLL perform
similarly on JSD, while NLL outperforms others on SWD. In
our experiments, the original NLL loss performs adequately
in the simple crossroad dataset. However, without the PELU
and soft loss modifications, the training is unstable and prone
to failure for real-world and complex datasets. The model
also generates severe noise without the PELU layer, making
it infeasible for downstream tasks.

B. Obstacle Avoidance Evaluation

The obstacle avoidance performance is evaluated by ensur-
ing that AMRs avoid collisions with all obstacles. To thor-
oughly assess the proposed MPC-ENLL method, we compare
various obstacle avoidance strategies, with and without coop-
erative pedestrian behavior, and then examine the impact of
different predictors, including BCE (non-EBL), KLD (EBL),
and ENLL (EBL). The effectiveness of the CGF grouping is
also validated. It is important to note that in all tests, motion
noise is added to human movement.

Four test scenarios are set. Scenarios 1-3 are in a warehouse
and Scenario 4 is in a hospital area, as shown in Fig. 7.

Scenarios 1 and 2 are inherited from [11]. In Scenario 1, a
pedestrian suddenly emerges from a corner, while in Scenario
2, a pedestrian abruptly changes direction in front of a robot.
Scenario 3 involves two AMRs and four pedestrians meeting
at an intersection, as in Fig. 4. In Scenario 4, a longer test
is conducted, where an AMR operates in a hospital area and
interacts with two pedestrians multiple times. The complete
episode is available in the attached video. Multiple metrics
are adopted, including linear and angular action smoothness
(second derivative), clearance to obstacles, deviation from the
reference path, solving time of motion planner (the duration
from the receipt of motion prediction results and reference
trajectories to the generation of the action), and success rate
(defined as reaching the goal within a time limit without
any collisions). In addition to MPC-WTA and DWA-CVM
methods [11], several baselines are evaluated: Regulated Pure
Pursuit (RPP) [32] which is a stop-and-wait method, Timed-
Elastic Band (TEB) [33] which is a trajectory optimization
method that generates collision-free reference trajectories for
MPC, CVM with angular noise (nCVM) [12] integrated with
MPC, and learning-based Social-GAN (SGAN) [16] with
MPC. The results are in TABLE II. While learning-based
control methods are not in the evaluation, as this study focuses
on deterministic and optimization-based approaches, according
to the study in [22], learning-based methods demonstrate
superior performance in avoiding complex static obstacles but
struggle with moving obstacles with limited training. The use
of learning-based techniques is a potential future extension of
this work. As in TABLE II, our MPC-ENLL outperforms the
other methods on success rate. Methods using the nCVM or
SGAN predictor exhibit low success rates in Scenario 1 due to
their failure to capture multimodal motion. Clearance is also
notable. With proper motion prediction, MPC-ENLL maintains
a large clearance from dynamic obstacles while utilizing space
around static obstacles. For motion prediction, on an NVIDIA
GTX 1650 Max-Q, the model inference time of the one-shot
EBL predictor is about 3 ms per object, which is about 19
times faster than the WTA-based predictor (58 ms).

In TABLE II, all pedestrians in Scenarios 1 and 2 are
assumed to be non-cooperative and ignore AMRs, representing
a worst-case scenario. To evaluate a more common condition
with cooperative pedestrians and test the robustness, a modi-
fied Social Force (SF) model [13] is applied, where pedestrians
avoid AMRs actively. As shown in Fig. 5, in Scenario 1,
due to the pedestrian’s abrupt appearance, even with the SF
pedestrian model, other methods still struggle. In Scenario
2, all methods achieve perfect collision avoidance. These re-
sults highlight the difference in the collision-avoidance ability
of different methods across scenarios, with the MPC-ENLL
method demonstrating prominent performance regarding co-
operative or non-cooperative dynamic obstacles. To compare
different loss functions in network training, MPC-BCE and
MPC-KLD are also tested as in TABLE II. In Scenarios 1,
3, and 4, they have lower success rates compared to the pro-
posed MPC-ENLL method due to the overestimation of future
occupied areas. In Scenario 2, with larger free space than the
other scenarios, they achieve more comparable performance.

The FRP is considered when selecting the CGF grouping
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TABLE II
EVALUATION RESULTS OF DIFFERENT METHODS (AVERAGE OVER 100 RUNS)

Scenario Method Smoothness Clearance (m) Deviation (m) Solving time (sec) Success (%)linear angular static dynamic mean std max mean max

Scenario 1

MPC-WTA* [11] 0.030 0.039 0.501 0.786 0.434 0.267 1.095 0.050 0.125 94
DWA-CVM* [34] 0.045 0.094 0.989 0.308 0.204 0.142 0.704 0.195 0.413 48
MPC-BCE 0.048 0.050 0.218 0.612 0.498 0.301 0.99 0.012 0.103 57
MPC-KLD 0.046 0.054 0.254 0.515 0.475 0.289 0.999 0.010 0.102 43
MPC-ENLL 0.040 0.048 0.333 0.704 0.632 0.375 1.270 0.008 0.036 96

Scenario 2

MPC-WTA* 0.046 0.042 0.574 0.863 0.224 0.160 1.064 0.052 0.121 81
DWA-CVM* 0.042 0.034 0.651 0.298 0.205 0.109 0.398 0.207 0.323 62
RPP [32] 0.027 ≈0 0.5 0.393 0.191 0.109 0.3 ≈0 ≈0 16
TEB-MPC [33] 0.010 0.012 0.395 0.474 0.206 0.111 0.453 0.005 0.102 56
MPC-nCVM [12] 0.046 0.031 0.475 0.730 0.229 0.115 0.500 0.011 0.103 84
MPC-SGAN [9] 0.031 0.019 0.472 0.553 0.243 0.269 2.893 0.007 0.102 63
MPC-BCE 0.049 0.048 0.303 1.601 0.391 0.149 0.859 0.010 0.103 89
MPC-KLD 0.058 0.049 0.366 1.094 0.343 0.125 0.574 0.011 0.103 75
MPC-ENLL 0.040 0.024 0.492 0.927 0.210 0.109 0.479 0.010 0.103 91

Scenario 3 MPC-ENLL 0.027 0.048 0.733 0.898 1.262 0.941 2.201 0.013 0.103 77

Scenario 4
MPC-BCE 0.027 0.033 0.042 0.731 0.585 0.397 1.226 0.037 0.121 19
MPC-KLD 0.029 0.030 0.071 0.662 0.918 0.708 2.401 0.027 0.118 18
MPC-ENLL 0.017 0.022 0.099 0.586 0.017 0.350 0.893 0.019 0.109 90

Methods in bold font are proposed in this work. Metrics in bold font are the best results. Starred (*) results are from [11]. In all scenarios, results of
methods with success rates lower than 15% are omitted. Scenario 3 shows worse data in two robots.

strategy. As illustrated in Fig. 6, where three pedestrians are
working towards an AMR, if the individual prediction is
implemented, these predictions form a non-convex obstruction
causing the robot to freeze. After grouping predictions via
CGF grouping, the AMR regards the occupied area in its
entirety and successfully avoids it.

In all MPC experiments, the solver time is restricted to 0.1
s for real-time performance, meaning that the solving process
can be interrupted. This can lead to premature solutions
without the collision-free guarantee [11]. In production, a
dedicated processor typically runs the solver that is further
optimized. Additional safety layers including extra sensors are
implemented to ensure safety. These measures are beyond the
scope of this work and are not discussed.

C. Long-term Robustness

Apart from Scenario 4, to further examine the robustness of
the proposed pipeline, long-term running experiments in the
warehouse (with cooperative SF pedestrians) are implemented.
To increase the uncertainty and interaction frequency, three
AMRs and three pedestrians operating in close proximity
are included, set to follow predefined routes. The location
and timing of interactions between AMRs and pedestrians
varied randomly due to the human motion noise. In three
trials, each AMR encountered over 20 pedestrian interactions
(defined as instances where a pedestrian influenced the robot’s
actions) and multiple fleet collision avoidance cases. The
proposed approach demonstrates robustness and adaptability
throughout the tests. Robots autonomously select different
strategies based on the situation, such as taking detours when
necessary, cutting shorter paths if safe, reversing in response
to dynamic obstacles, etc. With distributed MPC, collision
avoidance between multiple AMRs is also handled smoothly.

D. Simulation in Gazebo

The proposed pipeline is deployed in Gazebo for realistic
simulation. Fig. 7 demonstrates the warehouse and hospital

Fig. 7. Gazebo simulation of Scenarios 3 (up) and 4 (down). Red circles and
arrows indicate the initial positions and intended routes of pedestrians. In RViz
visualization, red ellipses are predictions from the energy-based predictor and
yellow dotted lines are planned trajectories by MPC.

environments. The corresponding code and environments are
available in the provided repository.

E. Relevant Hyperparameters and Normalized Masks

In this session, we briefly discuss some relevant hyper-
parameters and analyze the use of normalized masks. In
the original Gibbs-Boltzmann distribution, there is an inverse
temperature parameter scaling energy values in the numerator
of (12), which is normally 1 as in this work. In practice, this
can be used to tune the conservativeness of the prediction.
Another parameter that affects the conservatives of outputs is
the variance of the ground-truth Gaussian mask A. BCE and
KLD are more sensitive to the variance of the mask, as they
attempt to match it exactly. The proposed ENLL loss is less
affected by the mask width, offering greater robustness.

In different loss functions, different forms of masks are
employed, either the estimated ground-truth probability map
A or its normalization Ā. For the BCE loss, normalization
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is necessary for mathematical soundness since it requires a
Sigmoid output layer. Otherwise, it becomes inapplicable. For
the KLD loss, as defined in (15), normalizing the mask scales it
by the reciprocal of the maximum value in A. When evaluating
using the setup in TABLE I, with normalized masks, the
JSD is 0.3267 and the SWD is 9.6767 × 10−5, which are
slightly better than KLD without normalized masks but not
significantly. Moreover, normalization had no essential impact
on obstacle avoidance performance as it cannot solve the
problem of over-conservativeness. For the ENLL loss, using
the normalized mask scales up its negative component, which
may bias training toward stronger alignment with the mask.
In practice, ENLL trained with unnormalized masks produced
slightly more concentrated predictions but did not lead to
significant differences in obstacle avoidance performance.

VIII. CONCLUSION AND FUTURE WORK

In this study, we proposed a new energy-based learn-
ing method for multimodal motion prediction and extended
the MPC formulation for fleet coordination in an integrated
collision-free navigation pipeline for autonomous mobile
robots. The motion predictor based on energy-based learning
is shown to be more suitable for downstream motion planning
tasks. The combined MPC-ENLL approach outperforms other
popular obstacle avoidance approaches with or without the
cooperative pedestrian model. This pipeline is also imple-
mented in ROS2 and simulated in Gazebo under a warehouse
environment, which shows feasibility and safety.

One limitation of this work is the use of simulated environ-
ments, with complex static–dynamic obstacle interactions left
for future investigation. Other future work could include three
aspects: extending the pipeline to include the vision and track-
ing system; implementing a reference generator for MPC to
achieve fast convergence; and considering industrial transport
tasks involving more mobile robots and task schedulers.
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